
LLNL-CONF-491311

Heuristic-based techniques for mapping
irregular communication graphs to mesh
topologies

A. Bhatele, L. V. Kale

July 25, 2011

ESCAPE: Extreme Scale Computing APplication Enablement -
Modeling and Tools
Banff, Canada, Canada
September 2, 2011 through September 4, 2011



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Heuristic-based techniques for mapping irregular
communication graphs to mesh topologies

Abhinav Bhatele and Laxmikant V. Kale
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

E-mail: {bhatele, kale}@illinois.edu

Abstract— Mapping of parallel applications on the network
topology is becoming increasingly important on large supercom-
puters. Topology aware mapping can reduce the hops traveled
by messages on the network and hence reduce contention,
which can lead to improved performance. This paper discusses
heuristic techniques for mapping applications with irregular
communication graphs to mesh and torus topologies. Parallel
codes with irregular communication constitute an important
class of applications. Unstructured grid applications are a classic
example of codes with irregular communication patterns. Since
the mapping problem is NP-hard, this paper presents fast
heuristic-based algorithms. These heuristics are part of a larger
framework for automatic mapping of parallel applications. We
evaluate the heuristics in this paper in terms of the reduction
in average hops per byte. The heuristics discussed here are
applicable to most parallel applications since irregular graphs
constitute the most general category of communication patterns.
Some heuristics can also be easily extended to other network
topologies.

Keywords-mapping; interconnect topology; communication op-
timization; performance; irregular patterns

I. INTRODUCTION

The field of high performance computing has made tremen-
dous progress in the last ten years. The size of the largest
machines has increased by over an order of magnitude from
10,000 cores in 2001 to 500,000 in 2011. Interconnect topol-
ogy of the supercomputers can play an important role in
determining application performance at this scale. Interference
both within and across jobs can affect performance which
necessitates topology aware mapping of codes to processors.

N-dimensional mesh and torus interconnects are in
widespread use today on the largest machines, in part due
to their ease of design and installation. IBM Blue Gene
and Cray XT/XE machines are relevant examples of such
supercomputers. The machine at the top on the June 2011
Top500 list† has a 6D mesh interconnect [1]. Increasing sizes
of such machines leads to networks with a large diameter.
Messages travel farther with increasing network diameters
leading to sharing and contention for links. Network con-
tention can degrade application performance and hence, there
is a need for topology aware mapping algorithms for parallel
applications [2], [3].

†http://www.top500.org/lists/2011/06

Mapping of one graph on to another is a well-analyzed
problem in mathematics, VLSI and parallel computing. It
is also known to be NP-hard [4], [5]. Techniques from ge-
netic algorithms, simulated annealing, graph partitioning and
heuristics-based methods have been used to attack this general
problem [5]–[12]. In this paper, however, we focus specifically
on mapping of applications with irregular communication
graphs to mesh topologies. Graph partitioning libraries such
as SCOTCH provide support for mapping graphs to network
topologies [13]. However, there are no published results using
such libraries for mapping scientific applications running on
real hardware. We also exploit domain specific knowledge
about the application such as geometric coordinates associated
with the physical space being simulated, to aid our mapping
decisions. Application-specific information has not been used
by most mapping algorithms and frameworks, to the best of
our knowledge.

Heuristics presented in this paper are part of a larger
mapping framework that handles both regular and irregular
communication graphs. The automatic mapping framework is
described in [14] which discusses various aspects of the map-
ping problem – obtaining the application graph and processor
topology, pattern matching to identify regular patterns and
heuristics for mapping of regular (structured) communication
graphs.

The mapping heuristics presented in this paper are evaluated
in terms of the success in reducing the average hops traveled
per byte,

average hops per byte =

(
n∑

i=1

di × bi

)
÷

(
n∑

i=1

bi

)
where di is the number of hops traversed by a message of bi
bytes and n is the total number of messages sent. The hop-
bytes metric or hops per byte gives an approximate indication
of the overall contention on the network [7], [15]. Although
it does not capture hot-spots created on specific links, it is
still an easily derivable metric that correlates well with actual
application performance when communication to computation
ratio is high [16].

II. THE MAPPING PROBLEM

The mapping problem involves computing a mapping for
each node/task/object in the application communication graph



 1

 10

 100

2 4 6 8 10 12 14 16

T
im

e 
(µ

s)

Successive findNearest calls in thousands

Time for individual findNearest calls (spiraling)

 1

 10

 100

2 4 6 8 10 12 14 16

T
im

e 
(µ

s)

Successive findNearest calls in thousands

Time for individual findNearest calls (quadtree)

Fig. 1. Execution time (in microseconds) for 16, 384 consecutive calls to the spiraling and quadtree algorithms for findNearest from the AFFN mapping
algorithm for irregular graphs

to a processor in the physical topology. Irregular communi-
cation graphs provide an instance of the mapping problem in
its most general form. In an irregular communication graph,
each node can have an arbitrary number of neighbors and the
weights on the edges can also be different. We discuss two
kinds of heuristics to handle two different cases –

Scenario 1: There is no information about the physics be-
hind the application, from which the communication graphs
were obtained. In this case, we use heuristics that exploit
the neighbor relations between different nodes (Section IV).
The heuristics make no assumptions about patterns in the
communication graph.

Scenario 2: It is known that the application has a geometric
structure even though the graph is irregular. Quite often,
when simulating fractures in planes or solid objects using
unstructured grids, the tasks in the parallel application have
some geometric coordinate information associated with them,
and the communication structure is related to the geometry
(i.e. entities with nearby coordinates communicate more.) If
we have this coordinate information, we can exploit it to do a
better mapping (Section VI). Even if we do not have access to
this information but the domain is known to have a geometric
structure, we can try to infer the geometric arrangement of the
tasks using graph layout algorithms (Section V).

The heuristics presented in this paper are applicable for
mapping to two or three-dimensional mesh topologies but
also extensible to any other topology. This is facilitated by
the general idea on which all algorithms in this paper are
based: At each step, they select a “suitable” object to map
and find a “desirable” processor to place the object on. If
the desired processor is not available (it is overloaded based
on some criteria), another processor close to this processor
is chosen. As long as we can define functions to choose a
desirable processor and to find the nearest available processor
for a specific topology, the heuristics are generally applicable.

We begin with providing an efficient implementation to
find the nearest available processor in a two-dimensional

(2D) mesh. We then discuss mapping heuristics for different
scenarios and evaluate the heuristics based on the mapping
of communication graphs obtained from an unstructured grid
application.

III. FINDING THE NEAREST AVAILABLE PROCESSOR

We want to find the nearest available processor given
1) a “desirable” processor, and 2) a table indicating which
processors are available. One possible implementation is to
start at the desirable processor and spiral around it, first
looking at processors at distance 1, then distance 2, 3 and
so on. All processors at a certain distance are enumerated by
choosing one coordinate (x) first and then calculating the other
coordinate (y) based on the current value of distance being
considered. The first available processor that we come across
is returned as the answer. We refer to this as the spiraling
(through enumeration) algorithm for finding the nearest avail-
able processor.

The spiraling implementation presented above has a worst
case time complexity of O(p) where p is the number of
processors. Hence, if findNearest2D is called for each
node during mapping, it leads to a worst-case time complexity
of O(p2) for the mapping algorithm (number of nodes in
the communication graph, n = p). Figure 1 (left) shows the
running time for the algorithm when it is called from one of
the mapping algorithms (AFFN, see Section VI) for irregular
graphs. All timing runs for this paper were done on a 2.4
GHz Intel Core 2 Duo processor. Towards the end (for the last
two thousand calls), the execution time for findNearest2D
calls is quite significant. As more and more processors become
unavailable, spiraling around the desirable processor continues
for longer and longer distances before an available processor
is found. This can be avoided, in practice, by keeping a list
of the available processors when their number drops below a
certain threshold.

However, using an alternate implementation based on a
quadtree data structure (octree in case of 3D), we think that
the average-case running time of this algorithm can be reduced
further. It should be noted that both implementations give the



10-1

100

101

102

103

104

1024 2048 4096 8192 16384

Ex
ec

ut
io

n 
T

im
e 

(m
s)

Number of nodes in the communication graph

Comparison of findNearest implementations

Spiral (Corner)
Quadtree (Corner)

Spiral (Center)
Quadtree (Center)

10-1

100

101

102

103

256 1024 4096 16384

Ex
ec

ut
io

n 
T

im
e 

(m
s)

Number of nodes in the communication graph

Comparison of findNearest implementations

Spiral (AFFN)
Quadtree (AFFN)

Fig. 2. Comparison of execution time (in milliseconds) for spiraling and quadtree implementations for synthetic cases (left) and when invoked from the
AFFN algorithm (right)

same result for the next nearest processor given a desirable
processor and a list of unavailable processors.

A. Quadtree: An Alternative to Spiraling

We build a quadtree representing the 2D mesh of processors.
Each leaf in the tree holds one processor and each intermediate
node in the tree represents a subdomain of the mesh (all
processors in the subtree under it). The tree is obtained
by recursive bisection of the mesh into approximately equal
halves along both dimensions. The number of levels in the
tree is log4 p. At each node, we maintain information about
the number of available processors in its subtree and the extent
of the subdomain of the mesh controlled by it.

To find the nearest available processor, we start at the leaf
that holds the desirable processor. If it is available, we return
immediately. If not we traverse up the tree to its parent and
see if any of the parent’s children have an available processor.
This is done recursively until we reach the root of the tree. To
avoid visiting each node in the tree, several pruning criteria
are applied:

1) At each level, the intermediate nodes store the number
of available processors in the respective subtrees. We
go down a particular node only if it has at least one
available processor.

2) At any point in the search, the best solution so far (in
terms of the smallest hops to the desirable processor) is
maintained. We do not visit those nodes for which all
processors under their subtree are farther away from the
desirable processor than the current best solution.

Traversals up and down the quadtree depend on the height of
the tree which is log4 p. When looking for a nearest available
processor we start from a leaf and traverse all the way to
the root (which takes O(log p)). At each intermediate node
encountered on the way, we might go down the tree depending
on if we expect to find a processor in that sub-tree. We
believe that the pruning criteria mentioned above can restrict
the running time for this algorithm to O(log2 p) by avoiding
unnecessary traversals (not proven yet). Figure 1 (right) shows
the running time for the algorithm when it is called from one

of the mapping algorithms (AFFN) for irregular graphs. We
can see that most individual calls take no longer than 10 µs
(compared to up to 100 µs in the case of spiraling). And,
since both implementations return the nearest processor each
time, they produce mapping results of the same quality in
most cases. In the next section, we compare performance of
mapping algorithms when using the two implementations of
findNearest.

B. Comparison between Spiraling and Quadtree
On the average, calls to the quadtree implementation take

significantly less time than the spiraling one (1.8 µs versus
16 µs, see Figure 1). Figure 2 (left) compares the execution
time for the two implementations for a synthetic search
scenario. We start with an empty 2D mesh (all processors
available) and look for processors around a certain processor,
making them unavailable as we find them. The total time for
finding all the processors is recorded. The first two columns
represent the case where we look for processors close to
(0, 0) and the remaining two refer to the case where we
look for processors close to the processor at the center of the
mesh. It is evident that the savings from using the quadtree
implementation can be huge in some cases. For example, when
looking for processors around (0, 0), the speedup over the
spiraling implementations is nearly 23 times for a graph of
16, 384 nodes (note the logarithmic scale on the y-axis).

Let us try to see the impact of using spiraling and quadtree
in one of the mapping algorithms. We noticed that the AFFN
heuristic (described in Section VI) for irregular graphs takes a
significant amount of time. Figure 2 (right) shows the execu-
tion times for the mapping algorithm for different number of
nodes. We can see that for more than 1, 024 nodes, quadtree
is the correct choice for findNearest. At 16, 384 nodes,
the run that uses a quadtree is nearly 10 times faster than the
one that uses spiraling.

IV. STRATEGIES FOR GENERAL COMMUNICATION
GRAPHS

In the most general mapping problem, we have a commu-
nication graph for an application and we do not have any



information about patterns, structure or geometry of the graph.
In this scenario, we use heuristics that exploit the neighbor
relations between different nodes. They do not assume that
the communication graph has any spatial properties.

Heuristic 1 - Breadth First Traversal: A simple approach is
to map nodes of a graph as we traverse it breadth-first. We start
with a randomly chosen node (typically one with the id zero)
and place it on processor zero. Then we map the neighbors
of the mapped node near it and put neighbors of the mapped
neighbors in a queue. Neighbors for a given node are mapped
in an arbitrary order, and are mapped around the processor on
which the given node is mapped. This algorithm is referred to
as BFT in the following figures.

Since the algorithm visits each element in the graph once, it
takes linear time (assuming that the search for a nearest avail-
able empty processor takes constant time). In the worst case,
findNearest2D can take O(n) time at each call. However,
if the mapping heuristic places objects on the processor mesh
in an organized fashion (not leaving holes at random places
all over the the mesh), each call to findNearest2D takes
constant time.

Heuristic 2 - Max Heap Traversal: This is an optimization
over Heuristic 1. Here, we start with the node that has the
maximum number of neighbors and place it on the processor
at the center of the 2D mesh. All unmapped neighbors of
mapped nodes are put into a max heap. The nodes are stored in
decreasing order of the number of neighbors that have already
been mapped. Thus, by using a heap, we give preference to
nodes that have the maximum number of neighbors that have
already been placed.

Algorithm 1 Max Heap Traversal (MHT) Heuristic
procedure MHT(commMatrix , Px, Py)

// begin with the node with max neighbors (start) and a processor p
and place start on p

Map[start] = p
push all neighbors of start into the maxHeap
while !maxHeap.empty() do

start = maxHeap.pop()
< cx, cy >= centroid of mapped neighbors of start
Map[start] = findNearest2D(cx, cy , Px, Py)
push neighbors of start into the maxHeap if they have not been

mapped
end while

end procedure

The node at the top of the heap is deleted and placed close to
the centroid of the processors on which its neighbors have been
placed. We use the findNearest function to find the nearest
available processor to the centroid if the “desired” processor
is unavailable. This algorithm is referred to as MHT in figures.
Algorithm 1 shows the pseudo-code for the MHT heuristic.

V. INFERRING THE SPATIAL STRUCTURE

Sometimes we know that an application is simulating en-
tities that are laid out in 2D/3D space but we do not have
the spatial coordinates of the nodes in the communication

graph. Even if we do not have coordinate information, we
can still try to infer the geometric arrangement of the tasks.
For example, graph layout algorithms assign coordinates to
each node for a layout of planar graphs using force-directed
graph algorithms [17], [18]. We observed that graph layout
algorithms created graphs that matched the actual geometry
of the meshes quite well.

0

1

2 3

19

4

6

8

21

10

5

7

9

36

37

38

13

15

35

11

12

14

18

24

20

26

16

17

22

23

25

30

32

42

27

28

29

39

82

85

31

88

44

33

34

41

64

74

75

40

43

83

73

45

46

47

51

52

56

59

48

49

53

63

62

71

77

50

55

54 69

57

58

61

60

65
66

67 68

70

72

78

80

76

81

79

84

86

87

89

0

1
2

3

19

4

6

8

21

10

5

7

9

36

37

38

13

15

35

11

12

14

18

24

20

26

16

17

22

23
25

30

32

42

27

28
29

39

82

85

31

88

44

33

34

41

64
74

75

40

43

83

73

45

46

47

51

52

56

59

48

49

53

63

62

71

77

50

55

54

69 57

58

61

60

65

66

67

68
70

72
78

80

76

81

79
84

86

87

89

Fig. 3. Using the graphviz library to infer the spatial structure of an irregular
graph – original graph is shown on the left and the force-based planar layout
obtained using graphviz is shown on the right

To infer the coordinates of nodes in a graph, we use the
graphviz library [19], specifically neato, one of the graph
layout algorithms. The layout computed by neato is specified
by a physical model where nodes are treated as objects being
influenced by forces. The layout tries to find positions for
nodes such that the forces or the total energy in the system
is minimized. Neato implements the algorithms developed by
Kamada and Kawai [18]. We can use coordinates output by
the graphviz library as properties of the nodes for heuristics
discussed in Section VI.

Figure 3 shows the geometry inferred by the graphviz
library for an irregular graph of 90 nodes (original graph on the
left and force-based layout on the right). This graph was ob-
tained from a CHARM++ benchmark which does unstructured
grid computations. Each node in the graph is a task or process
in the program and contains a portion of the unstructured
mesh. The mesh is distributed among the nodes by METIS,
a graph partitioning library [20]. Each node might typically
contain 100 to 10, 000 triangles. We will use a similar graph
as shown in Figure 3 with varying number of nodes to evaluate
the mapping algorithms in this paper.

VI. STRATEGIES FOR GRAPHS WITH COORDINATE
INFORMATION

Quite often, when using unstructured grids to simulate
fractures in planes or solids that are laid out in 2D/3D space,
the tasks in the parallel application have some geometric
coordinate information associated with them. This information
can be used when mapping a 2D or 3D communication graph



to 2D/3D processor topologies. The heuristics below exploit
coordinate information associated with the nodes to guide their
decisions.

Heuristic 3 - Affine Mapping: Each node in the commu-
nication graph has X and Y coordinates which represent
the centroid for all triangles of the underlying mesh in that
particular node. An affine translation is done on the coor-
dinates of the centroid to match the relative dimensions of
the processor mesh. Based on the translation, if more than
one node gets mapped to the same processor, all subsequent
nodes after the first one are mapped by spiraling around their
original mapping. For this we use the findNearest function
discussed earlier. Affine mapping leads to a stretching and
shrinking of the communication graph and may or may not
give the best solutions depending on its aspect ratio. This
algorithm (pseudo code in Algorithm 2) is referred to as AFFN
in the figures.

Algorithm 2 Affine Mapping (AFFN) Heuristic
procedure AFFN(commMatrix , coordInfo, Px, Py)

// let minx, maxx, miny and maxy denote the minimum and
maximum x and y coordinates

// associated with any node
for i ∈ nodes do

af x = bPx × x−minx
maxx−minx

c
af y = bPy ×

y−miny

maxy−miny
c

Map[i] = findNearest2D(af x, af y , Px, Py)
end for

end procedure

Heuristic 4 - Corners to Center: A second heuristic that
uses coordinate information starts from four corners of the
communication graph simultaneously and maps progressively
from those directions inward. The four corners for an irregular
graph are obtained based on the coordinates associated with
the nodes. Depending upon the shape of the graph, it might
not be possible always to find four corners of a given graph.
Hence, simplistically, we choose the four nodes with the
minimum and maximum X and Y coordinates respectively.

After placing the four chosen nodes on four corners of the
2D mesh (in 3D, we would do the same with eight corners),
we can use heuristics developed in Section IV to choose
the mapping of the remaining nodes. We can either do a
breadth-first traversal from each corner or we can do a max
heap traversal and place nodes with the maximum mapped
neighbors first. COCE refers to the algorithm that uses the BFT
heuristic for mapping the remaining nodes after the corners
have been placed. COCE+MHT refers to the algorithm that uses
the MHT heuristic for the remaining nodes.

VII. RESULTS: MAPPING TO A 2D PROCESSOR MESH

We first compare the algorithms discussed above for map-
ping of irregular graphs to 2D processor meshes. The graphs
used in this section and the next were obtained from a
CHARM++ benchmark which does unstructured grid compu-
tations. Each node in the graph is a task or process in the

program and contains a portion of the unstructured mesh. The
coordinates for each node in the graph are the coordinates of
the centroid for all triangles in a node.

A. Time Complexity

The time complexity of the mapping algorithms depends
on the running time of the findNearest implementa-
tion, which is used by all of them. Let us assume that
findNearest takes constant time at each call. The BFT
heuristic visits each node in the graph once and hence takes
linear time for doing the mapping. The max heap traversal
(MHT) heuristic deletes the element at root of the heap which
is Θ(log n) and inserts new elements in the heap which takes
Θ(log n) for each insert (where n is the number of nodes in
the communication graph). Every node in the graph is only
inserted once and hence the total time complexity for the
algorithm is O(n log n). The COCE heuristic takes linear time
since it visits each node only once. The COCE+MHT algo-
rithm, which uses the max heap technique takes O(n log n).
The affine mapping heuristic also visits each node once and
therefore has a linear running time.

 0.1

 1

 10

 100

256 1024 4096 16384

T
im

e 
(m

s)

Number of nodes in the communication graph

Execution time for irregular mapping heuristics

MHT
COCE+MHT

AFFN
COCE

BFT

Fig. 4. Execution time for the five irregular mapping heuristics

If we assume that findNearest has an average case time
complexity of O(log2 n), then an additional O(n log2 n) term
is added to the all the algorithms. More powerful heuristics
(than the ones implemented) are possible, but with scalability
in mind, anything worse than linearithmic (for the average
case) is not practical. Figure 4 shows the actual running times
of the mapping algorithms (on a 2.4 GHz Intel Core 2 Duo
processor). We can see that BFT and COCE take less than
10 ms for a 16, 384-node graph.

B. Quality of Mapping Solutions: Hop-bytes

Next, we compare the mapping heuristics in terms of
reduction in the average hops per byte, using irregular graphs
of varying sizes (graph described in Section V). These are
mapped on 2D processor meshes and the comparison is done
by calculating the hops per byte for each mapping. The
heuristics are also compared with the hops per byte obtained
by the default mapping and using the pairwise exchanges tech-
nique [5]. The default mapping is a linearized mapping of the



 0

 5

 10

 15

 20

256 1024 4096 16384

A
ve

ra
ge

 h
op

s 
pe

r 
by

te

Number of nodes in the communication graph

Comparison of mapping strategies for different graph sizes

Default (METIS)
BFT

MHT
COCE

COCE+MHT
AFFN
PAIRS

 0

 5

 10

 15

 20

512X2 256X4 128X8 64X16 32X32

A
ve

ra
ge

 h
op

s 
pe

r 
by

te

Different aspect ratios of 2D mesh

Comparison of mapping strategies for mesh aspect ratios

Default (METIS)
BFT

MHT
COCE

COCE+MHT
AFFN

Fig. 5. Hops per byte for mapping of irregular graphs to 2D meshes of different sizes (left) and to 1, 024-node meshes of different aspect ratios (right)

 2

 4

 8

 16

 32

256 1024 4096 16384

A
ve

ra
ge

 h
op

s 
pe

r 
by

te

Number of nodes in the communication graph

Comparison of mapping strategies (1 core per processor)

Random
Default (METIS)

BFT
MHT

COCE+MHT

 1

 2

 4

 8

 16

 32

256 1024 4096 16384

A
ve

ra
ge

 h
op

s 
pe

r 
by

te

Number of nodes in the communication graph

Comparison of mapping strategies (4 cores per processor)

Random
Default (METIS)

BFT
MHT

COCE+MHT

Fig. 6. Hops per byte for mapping of irregular communication graphs to 3D tori

nodes (numbered by METIS during mesh partitioning) by their
IDs to the processors. For pairwise exchanges (PAIRS), we
start with the solution obtained by MHT and do pairwise swaps
until we have a “reasonable” value for hops per byte. This
gives a near-optimal value for the hops per byte. Figure 5 (left)
shows the average hops per byte for various algorithms when
mapping graphs containing 256 to 16, 384 nodes respectively.

The MHT heuristic, which does a max heap traversal based
on the maximum number of mapped neighbors, gives the
best average hops per byte for lower graph sizes whereas
COCE+MHT heuristic performs best for larger graphs (> 4096
nodes). The other three heuristics (BFT, COCE and AFFN)
do not perform as well. For mapping to 2D meshes, the
performance of mapping algorithms is much better than the
default mapping especially for large node counts.

Next, we compare the effects of varying the aspect ratios of
the processor mesh (keeping the total number of processors
constant). Figure 5 (right) presents the hops per byte for
mapping a 1, 024-node graph using various heuristics. The
dimensions of the processor mesh are varied from 512 × 2
to 32 × 32. A general trend to be noticed is that mapping
heuristics do not perform very well when the aspect ratio is
very skewed (one dimension is much larger than the other
dimension). For the first two mesh dimensions, the BFT
heuristic alone does better than the default mapping. Even for
the 128× 8 mesh, BFT is the best.

The COCE+MHT heuristic performs well for the last three
cases (and better than MHT in almost all cases.) This shows
that it is useful to have the freedom to use the coordinate
information associated with nodes when needed. Since differ-
ent heuristics perform “best” depending on the communication
graph and the processor mesh and the algorithms are very
scalable, it may be worthwhile to try all of them, and choose
the one that is best.

VIII. RESULTS: MAPPING TO A 3D TORUS

The previous section discussed strategies for mapping an
irregular graph to a 2D processor topology. These strategies
can be easily extended to map such graphs on to 3D topolo-
gies. This section discusses the mapping of graphs from an
unstructured grid application to 3D torus partitions.

Figure 6 (left) presents the hops per byte obtained for
mapping irregular graphs to 3D torus partitions ranging in
size from 256 to 16, 384 processors. These experiments used
a mesh similar to the one shown in Figure 3. As we increase
the number of processors, the improvement in average hops per
byte over the default mapping increases. For smaller number of
processors, MHT performs the best, but gradually COCE+MHT
improves and gives better average hops per byte on large
number of processors.

An important observation is that the default mapping is
much better than what a random mapping would obtain for the



hops per byte values. It is closer in performance to the mapping
heuristics. Let us analyze a particular case to get a better idea.
For the case when objects are mapped randomly, the average
hops per byte would be half of the network diameter. For
the 16, 384 processor case, the dimensions of the torus are
16 × 32 × 32 and the diameter is 8 + 16 + 16 = 40. So on
the average, each message would travel 20 hops if the objects
were mapped randomly. As we can see in Figure 6 (left), the
hops per byte value for the random mapping is 20.03 and for
the default mapping is 4.6 – significantly smaller than that for
the random mapping.

The default mapping is a linearized mapping of the objects
based on their IDs to the processors. This suggests that the
object IDs correspond well with the communication properties
of the objects (i.e. objects with nearby IDs communicate with
each other.) We attribute this to the METIS algorithm [20]
which is used for partitioning the unstructured mesh into the
parallel tasks (nodes of the communication graph). METIS
tries to preserve communication properties of the graph by
numbering communicating objects with nearby IDs.

Finally, Figure 6 (right) presents the hops per byte when
processors on the 3D network have multiple cores per node.
This is fairly common on today’s supercomputers and we
assume four cores per node (as is the case for IBM Blue
Gene/P). The hops in this case are calculated by counting only
those edges in the graph that go across nodes. In general,
the average hops per byte for each case are smaller for the
right plot when compared with the left plot. This is because
several edges are now within the node and hence do not count
towards messages going on the network. As a consequence,
the improvement in hops per byte when there are multiple
cores is less than when there is one core per processor.

IX. SUMMARY

In this paper, we presented fast, heuristic-based algorithms
for the mapping of irregular communication graphs to 2D and
3D mesh topologies. We demonstrated that domain-specific
knowledge of parallel applications such as the geometric
coordinates can be used to aid the mapping process and obtain
better solutions. We also presented an efficient implementation
for finding the nearest available processor on 2D meshes based
on a quadtree which leads to performance improvements of up
to ten times!

The mapping algorithms were compared with the default
METIS-based mapping and with the technique of pairwise
exchanges and evaluated based on the metric of average hops
per byte. As described earlier, some of the heuristics can
be extended to map on arbitrary network topologies. The
heuristics presented in this paper are part of an automatic
mapping framework that is being developed to relieve the
application developer of the mapping burden.

ACKNOWLEDGMENTS

This work was supported in part by the DOE Grant DE-
SC0001845 for HPC Colony II. This document was released

by Lawrence Livermore National Laboratory for an external
audience as LLNL-CONF-491311.

REFERENCES

[1] Y. Ajima, S. Sumimoto, and T. Shimizu, “Tofu: A 6d mesh/torus
interconnect for exascale computers,” Computer, vol. 42, pp. 36–40,
2009.

[2] A. Bhatelé, E. Bohm, and L. V. Kalé, “Optimizing communication for
Charm++ applications by reducing network contention,” Concurrency
and Computation: Practice & Experience, vol. 23, no. 2, pp. 211–222,
February 2011.

[3] F. Gygi, E. W. Draeger, M. Schulz, B. R. D. Supinski, J. A. Gunnels,
V. Austel, J. C. Sexton, F. Franchetti, S. Kral, C. Ueberhuber, and
J. Lorenz, “Large-Scale Electronic Structure Calculations of High-Z
Metals on the Blue Gene/L Platform,” in Proceedings of the Interna-
tional Conference in Supercomputing. ACM Press, 2006.

[4] H. Kasahara and S. Narita, “Practical multiprocessor scheduling algo-
rithms for efficient parallel processing,” IEEE Trans. Comput., vol. 33,
pp. 1023–1029, November 1984.

[5] Shahid H. Bokhari, “On the Mapping Problem,” IEEE Trans. Computers,
vol. 30, no. 3, pp. 207–214, 1981.

[6] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. C. Sexton, and
R. Walkup, “Optimizing task layout on the Blue Gene/L supercomputer,”
IBM Journal of Research and Development, vol. 49, no. 2/3, pp. 489–
500, 2005.

[7] F. Ercal and J. Ramanujam and P. Sadayappan, “Task allocation onto
a hypercube by recursive mincut bipartitioning,” in Proceedings of the
3rd conference on Hypercube concurrent computers and applications.
ACM Press, 1988, pp. 210–221.

[8] S. Arunkumar and T. Chockalingam, “Randomized Heuristics for the
Mapping Problem,” International Journal of High Speed Computing
(IJHSC), vol. 4, no. 4, pp. 289–300, December 1992.

[9] S. Wayne Bollinger and Scott F. Midkiff, “Processor and Link Assign-
ment in Multicomputers Using Simulated Annealing,” in ICPP (1), 1988,
pp. 1–7.

[10] Soo-Young Lee and J. K. Aggarwal, “A Mapping Strategy for Parallel
Processing,” IEEE Trans. Computers, vol. 36, no. 4, pp. 433–442, 1987.

[11] H. Yu, I.-H. Chung, and J. Moreira, “Topology mapping for Blue
Gene/L supercomputer,” in SC ’06: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing. New York, NY, USA: ACM, 2006, p.
116.

[12] T. Hoefler and M. Snir, “Generic topology mapping strategies for
large-scale parallel architectures,” in Proceedings of the international
conference on Supercomputing, ser. ICS ’11. New York, NY, USA:
ACM, 2011, pp. 75–84.

[13] C. Chevalier, F. Pellegrini, I. Futurs, and U. B. I, “Improvement of the
efficiency of genetic algorithms for scalable parallel graph partitioning
in a multi-level framework,” in In Proceedings of Euro-Par 2006, LNCS
4128:243252, 2006, pp. 243–252.

[14] A. Bhatele, G. Gupta, L. V. Kale, and I.-H. Chung, “Automated Mapping
of Regular Communication Graphs on Mesh Interconnects,” in Pro-
ceedings of International Conference on High Performance Computing
(HiPC), 2010.

[15] T. Agarwal, A. Sharma, and L. V. Kalé, “Topology-aware task mapping
for reducing communication contention on large parallel machines,” in
Proceedings of IEEE International Parallel and Distributed Processing
Symposium 2006, April 2006.

[16] A. Bhatele, “Automating Topology Aware Mapping for Supercom-
puters,” Ph.D. dissertation, Dept. of Computer Science, University of
Illinois, August 2010, http://hdl.handle.net/2142/16578.

[17] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-
directed placement,” Software: Practice and Experience, vol. 21, pp.
1129–1164, March 1991.

[18] T. Kamada and S. Kawai, “An algorithm for drawing general undirected
graphs,” Inf. Process. Lett., vol. 31, pp. 7–15, April 1989.

[19] E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineering,” Software - Practice and
Experience, vol. 30, pp. 1203–1233, 1999.

[20] G. Karypis and V. Kumar, “Parallel multilevel k-way partitioning scheme
for irregular graphs,” in Supercomputing ’96: Proceedings of the 1996
ACM/IEEE conference on Supercomputing (CDROM), 1996, p. 35.

bledsoe2
Typewritten Text
Prepared by LLNL under Contract DE-AC52-07NA27344.




